Note on marking:

-1 mark at most in Section One for missing units -1 mark at most in Section One for incorrect rounding

Christ Church Grammar School

Semester One Examination, 2018

Question/Answer booklet

MATHEMATICS METHODS UNIT 1 Section One: Calculator-free

Your name

Teacher's name

Time allowed for this section

Reading time before commencing work: Working time:

five minutes fifty minutes

Materials required/recommended for this section

To be provided by the supervisor This Question/Answer booklet Formula sheet

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters

Special items: nil

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised material. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Working time (minutes)	Marks available	Percentage of examination
Section One: Calculator-free	8	8	50	52	35
Section Two: Calculator-assumed	14	14	100	98	65
				Total	100

Instructions to candidates

- 1. The rules for the conduct of examinations are detailed in the school handbook. Sitting this examination implies that you agree to abide by these rules.
- 2. Write your answers in this Question/Answer booklet.
- 3. You must be careful to confine your response to the specific question asked and to follow any instructions that are specified to a particular question.
- 4. Supplementary pages for the use of planning/continuing your answer to a question have been provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.
- 5. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat any question, ensure that you cancel the answer you do not wish to have marked.
- 6. It is recommended that you do not use pencil, except in diagrams.
- 7. The Formula sheet is not to be handed in with your Question/Answer booklet.

2

METHODS UNIT 1

35% (52 Marks)

Section One: Calculator-free

This section has **eight (8)** questions. Answer **all** questions. Write your answers in the spaces provided.

Working time: 50 minutes.

Question 1

- (a) Solve 7(3t + 1) 3(2t 5) = 0 for t.
 - Solution21t + 7 6t + 15 = 015t + 22 = 0 $t = -\frac{22}{15}$ Specific behaviours \checkmark expands and simplifies correctly \checkmark solves for t
- (b) Determine the coordinates of the turning point of the following quadratic curve **by completing the square.**

$$y = 2x^2 - 6x + 8$$

(4 marks)

Solution
$$y = 2(x^2 - 3x + 4)$$
 $= 2\left(\left(x - \frac{3}{2}\right)^2 - \frac{9}{4} + 4\right)$ $= 2\left(\left(x - \frac{3}{2}\right)^2 + \frac{7}{4}\right)$ $= 2\left(x - \frac{3}{2}\right)^2 + \frac{7}{2}$ turning point is $\left(\frac{3}{2}, \frac{7}{2}\right)$ Specific behaviours \checkmark takes out factor of 2 \checkmark correctly completes the square \checkmark calculates x coordinate of turning point \checkmark calculates y coordinate of turning point

(6 marks)

(2 marks)

Question 2

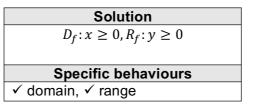
Solve the following equations.

(a)
$$5x^2 = 10x$$
.

Solution 5x(x-2) = 0 $x = 0, \qquad x = 2$ **Specific behaviours** \checkmark equates to zero and factorises ✓ solutions

(b)
$$x(x-5) = 36.$$

Solution $x^2 - 5x - 36 = 0$ (x+4)(x-9) = 0 $x = -4, \qquad x = 9$ Specific behaviours ✓ expands and equates to zero ✓ factorises ✓ solutions


(3 marks)

(5 marks)

Question 3

A function is defined by $f(x) = \sqrt{2x}$.

(a) State the domain and range of f(x).

5

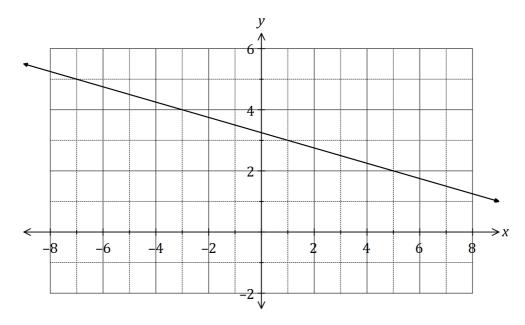
(b) Sketch the graph of y = f(x) on the axes below.

y

-2 2 4 6 8 -2 2 4 6 8

Solution	
See graph	
Specific behaviours	
✓ starts at (0,0)	
\checkmark passes through (2, 2) and (8, 4)	
✓ smooth curve	

(5 marks)


(2 marks)

(3 marks)

 $\rightarrow x$

(6 marks)

The graph of the line L_1 is shown below.

6

(a) Determine the equation of L_1 .

(3 marks)

Solution		
$m = -\frac{1}{4}$		
$y - 3 = -\frac{1}{4}(x - 1)$ $y = -\frac{1}{4}x + \frac{13}{4}$ or $4y + x = 13$		
Specific behaviours		
✓ gradient		
✓ y intercept		
 ✓ correct equation (any form) 		

Question 4 (continued)

Two points are located at A(-10, 5) and B(6, 29).

(b) Line L_2 is perpendicular to L_1 and passes through the mid-point of A and B. Determine the equation of L_2 . (3 marks)

Solution
$$M(-2, 17)$$
 $m = -1 \div \left(-\frac{1}{4}\right) = 4$ $y - 17 = 4(x - (-2))$ $y = 4x + 25$ Specific behaviours \checkmark coordinates of midpoint \checkmark perpendicular gradient \checkmark equation of line (any form)

(6 marks)

(2 marks)

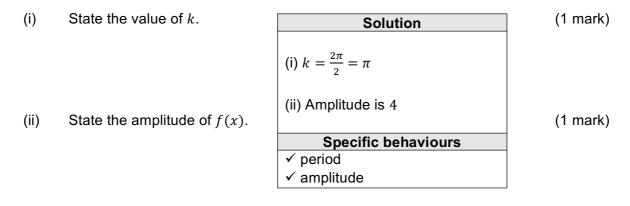
Expand and simplify (x - 2)(3x - 1)(x + 2). (a)

Solution
$$(x-2)(3x-1)(x+2) = (3x-1)(x^2-4)$$
 $= 3x^3 - x^2 - 12x + 4$ Specific behaviours \checkmark expands one pair of terms \checkmark simplified expansion

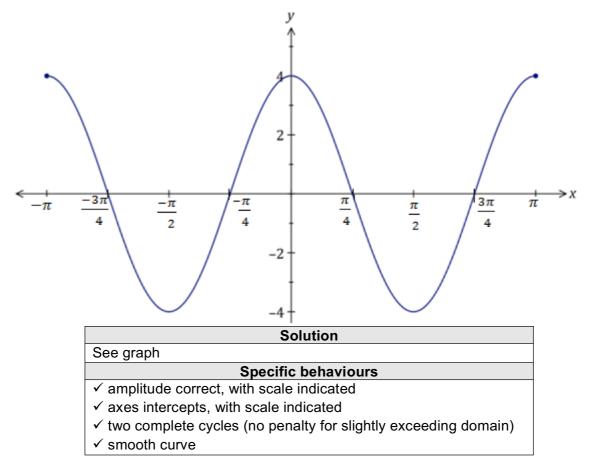
One solution to the equation $x^3 + 56 = 34x - x^2$ is x = 4. Determine all other solutions. (b) (4 marks)

Solution
$x^3 + x^2 - 34x + 56 = 0$
$(x-4)(x^2 + ax - 14) = 0$
$-4 + a = 1 \Rightarrow a = 5$
$(x-4)(x^2+5x-14) = 0$
(x-4)(x-2)(x+7) = 0
Other solutions: $x = 2$, $x = -7$
Specific behaviours
✓ equates to zero and identifies $(x - 4)$ as a factor
✓ factors out quadratic expression
\checkmark identifies value of a
\checkmark factors quadratic and states other two solutions

(8 marks)


(2 marks)

Question 6

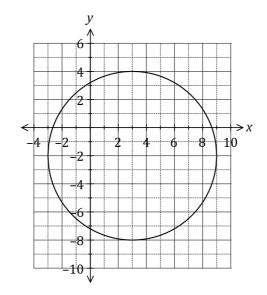

(a) Solve the equation $\sqrt{3} \tan(x) - 3 = 0$ for $0 \le x \le 2\pi$.

Solution				
$\tan x = \frac{3}{\sqrt{3}} = \sqrt{3}$ $x = \frac{\pi}{3}, \frac{4\pi}{3}$				
Specific behaviours				
✓ one solution				
\checkmark second solution (penalise once for use of degrees)				

(b) A function has a period of k and is defined by $f(x) = 4\cos(2x)$, where x is in radians.

(iii) Sketch the graph of y = f(x) over the domain $-k \le x \le k$. (4 marks)

Question 7


(8 marks)

(a) The graph of the relation $y^2 = x$ passes through the points (16, *a*) and (*b*, -5). Determine the values of *a* and *b*. (3 marks)

Solution		
$a^2 = 16 \Rightarrow a = 4, a = -4$		
$(-5)^2 = b \Rightarrow b = 25$		
Specific behaviours		
\checkmark one value of a		
\checkmark both values of a		
\checkmark value of b		

Question 7 (continued)

(b) Another relation is circular, as shown below.

(i) Determine the equation of this circle in the form $x^2 + y^2 = a + bx + cy$, where *a*, *b* and *c* are constants. (4 marks)

SolutionCentre at
$$(3, -2)$$
 and $r = 6$ $(x - 3)^2 + (y + 2)^2 = 6^2$ $x^2 + y^2 = 23 + 6x - 4y$ Specific behaviours \checkmark indicates centre \checkmark indicates radius \checkmark factored form \checkmark re-arranges as required

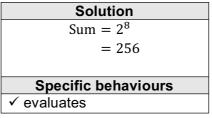
(ii) What feature of the graph indicates that a relation rather than a function is shown? (1 mark)

Solution
A vertical line can be drawn that intersects the circle
more than once, and thus shows a relation.
Specific behaviours
✓ uses vertical line test

11

METHODS UNIT 1

CALCULATOR-FREE


Question 8

(8 marks)

(a) The twelfth row of Pascal's triangle begins with the numbers 1, 12, 66, 220, 495, 792, 924 and so on.

(i) State the value of
$$\binom{12}{5}$$
.
(i) State the value of $\binom{12}{5}$.
Specific behaviours
 \checkmark correct value
(ii) Deduce the value of $\binom{13}{4}$.
(2 marks)
 $\binom{13}{4} = \binom{12}{3} + \binom{12}{4} = 220 + 495 = 715$
Specific behaviours
 \checkmark indicates use of terms in previous row
 \checkmark correct value

(iii) Calculate the sum of all the terms in the eighth row of Pascal's triangle. (1 mark)

- (b) Determine the coefficient of the x^2 term in the expansion of:
 - (i) $(4x-3)^2$,

Solution
$16x^2$ Coefficient is 16
Specific behaviours

(ii) $(2x+1)^5$.

(3 marks)

(1 mark)

Solution	
Required term is $(2x)^2(1)^3 \times {}^5C_2 = 4x^2 \times 10 = 40x^2$	
Coefficient is 40	
Specific behaviours	
✓ indicates elements of required term	
\checkmark indicates use of ${}^{5}C_{2}$ and/or Pascals triangle	
✓ correct value	

12

CALCULATOR-FREE

Additional working space

Question number: _____

Additional working space

Question number: _____